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The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in
GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to

the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at

early delay times was determined to be intervalley scattering of electrons out of the X7 upper
conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole

scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.
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The relaxation of hot-electron distributions has been

very well characterized in various semiconductors by ul-
trafast spectroscopy. Relatively little work has been per-
formed in GaP, since GaAs and Si have been the systems
of choice for study due to their technological importance

in optical and electronic applications. GaP has previous-

ly been considered as a material for fast mid-IR photo-
detection. 1 GaP transport properties are now becoming

important for its use in complex alloy structures, e.g.,
int_xGaxAsyPl_y/InP heterostructure las ers2 and

inl_xGaxP/InP solar cells. 3 Intervalley scattering is ex-

pected to be one of the dominant scattering mechanisms
for hot, high-density electrons in bulk and quantum-well
semiconductors, limiting their role in devices. 4'5 In addi-

tion, the upper conduction band may play an important
role in the transport properties of hot, high-density elec-

trons in these devices and other nanostructures under

high-field conditions.
In this article, we present an experimental study of the

intervalley relaxation of hot electrons in the satellite and

upper conduction-band X6 and X7 valleys in GaP using
time-resolved UV-pump-IR-probe absorption spectros-

copy. From the induced absorption spectra the dominant
scattering mechanisms, the transient mobility, and the
deformation potential for intervalley scattering between

the X 6 and X7 valleys were determined for the hot elec-
trons in the satellite and upper conduction-band valleys.

In the experiment, 500-fs pump pulses were obtained
from the fundamental wavelength (585 nm) or the second
harmonic (293 nm) of a synchronously pumped, mode-

locked Rhodamine 6G dye laser. The 500-fs, tunable IR

probe pulses were generated by difference frequency mix-

ing of the fundamental pulse with a supercontinuum
pulse generated in methanol, and were used to measure
the induced IR absorption. The pump and probe pulses

were loosely focused onto a 350-#m aperture to obtain
uniform intensities across the sample. A fraction of the

probe pulse was measured before passing through the
sample to be used as a reference to minimize shot-to-shot
intensity fluctuations. The temporal resolution of this
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system is 700 fs. 6 The sample used was a 0.5-mm-thick,
n-type GaP crystal doped with Se at a concentration of

1017 cm -3. The measurements were done at room tem-

perature.
Measurements were made of the transient IR absorp-

tion at wavelengths between 2.5 and 5.5 #m, when the

sample was photoexcited with either _.p,mp=293 nm or

kpump =585 nm. The temporal behavior of the electron
population in the X6 and XT, second conduction-band
valleys was determined by monitoring the transient IR-

absorption changes due to the photoexcited free carrier
and due to X 6---_X7 interconduction band absorption.

The intense UV (293 nm) pump pulse was used to pho-

toexcite electrons from the heavy-hole light-hole, and

split-off-hole valence bands to the F 6, central valley of the
first conduction band by direct absorption. These pho-
toexcited electrons obtained an average kinetic energy of

_0.8 eV, sufficient for intervalley scattering from the F 6

valley to both the X6, first conduction-band satellite val-

ley, and the X7, upper conduction-band valley as well as
the L6 first conduction-band valley. Once electrons
scatter to the satellite valleys they may scatter back and
forth to the F6 valley, scatter between the satellite val-

leys, or relax within a given valley by emitting LO pho-
nons. The effect of these relaxation processes and elec-
tron thermalization is to put a large (-1020 cm-3)

thermalized population of hot electrons in the X valleys
within the risetime of the induced IR absorption ( < 2 ps).

Subsequent energy relaxation occurs, and the electrons
cool down and are redistributed among the conduction-

band valleys by intervalley scattering (see the inset of Fig.
1). The weak, time-delayed IR probe pulse was used to
monitor the induced absorption as a function of pump-

probe delay time.
The induced IR-absorption spectra measured under

UV photoexcitation at pump-probe delay times of 2 and
30 ps are displayed in Fig. 1. The solid lines in Fig. 1 are

a least-squares fit of the spectra using a model that in-
cludes contributions to the induced IR absorption from
free-carrier absorption (FCA) by the photoexcited elec-
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FIG. 1. Induced IR-absorption spectra in GaP, _.p,mp=293

nm, at delay times of 7"=2 and 30 ps. The solid lines are line-

shape fits of the data. The dashed lines are the calculated FCA

spectra. The inset is a schematic diagram of the band structure

of GaP showing the pump and probe transitions and relevant in-
tervalley scattering transitions.

trons and holes, 7 direct interconduction-band absorption

(DIBA) by electrons in the X 6 valley to the X 7 valley, 8

and indirect interconduction-band absorption (IIBA) by

electrons in the X 6 valley to the F 6 or L 6 valleys. 7

Intervalence-band absorption has been shown to be negli-

gible at the probe wavelengths used in this study. 9 The

free-carrier contribution, which dominates at longer

wavelengths, rises as AODFcA(_. ) oc/_P (Ref. 10). The best

fit to the spectra at _-=2 ps is given by p =2.5, but for

later times, at _-=30 ps the best fit is given by p =3.5.
This effect will be discussed below.

The direct X6---_X7 absorption spectrum of this al-

lowed, momentum-conserving transition is calculated us-

ing perturbation theory. The absorption change can be

written, after integration over the electron wave vector,
as 8

1/2

I hc -AE' m 213
AODDIBA(_.) cc / 2. X6'X7
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probe wavelength _., can be expressed in terms of the

effective masses and AE_6.x 7 as

E6'7(_')=( mr/m6,7 )(hc /_'-- AEx6,x 7 ) • (2)

From our fit to the induced spectrum we can extract

the hot-electron temperature T e and the electron energy

distributions in the X 6 and X 7 valleys, n6(E6,Ef6 ' Te )

and nT(E6,Ef6 ' Te ), respectively.13 It was found that at 2

ps essentially all of the electrons have been transferred to

the X 6 and X 7 valleys from the F 6 valley. The DIBA is

characterized by a large Burstein-Moss shift 10 due to the

degeneracy of the electron population in the upper

conduction-band, X7, valley. Between 2 and 30 ps, the

Burstein-Moss shift of the DIBA is significantly reduced,

indicating that the electron population in the X 7 valley
has been reduced.

The theoretical fits to the induced IR-absorption spec-

tra show that probe photons with a wavelength of 4.7 #m

are not energetic enough to cause electron interband

transitions, i.e., only FCA is present. Figure 2 shows the

completely time-resolved change of IR absorption when

_'pump=293 nm and _,probe=4.7 /zm. The temporal

behavior is characterized by a rapid rise and peak in the

absorption, followed by a fast decay component (_ 5 ps),

and finally a slow decay component that is flat during the
experimental time range of 100 ps.

To eliminate transfer to the upper conduction-band, X 7
valley, a visible (585 nm) pump pulse was used with

_probe = 4.7 /zm. The peak at early delay times, detected

with 293-nm excitation, was not observed with 585-nm

excitation. This result is shown in the inset of Fig. 2, and

is characterized by a rapid rise in absorption. Only a

slow decay component that is almost flat during the ex-

perimental time range of 100 ps is observed. With

3-pump=585 nm, electrons are photoexcited only to the X 6

valley by an indirect absorption, and do not obtain

X[f6(E6'Ef6, Te)-fy(ET,Ef7, Te)], (1)

where f6 and f7 are the Fermi-Dirac distributions for

electrons in the X 6 and X 7 valleys, respectively, El6 and

El7 are the quasi-Fermi energies for the populations in

the X 6 and X 7 valleys, respectively, AE:r6,x7 is the renor-

malized energy gap between the X 6 and X 7 valley mini-

ma, 11 T e is the electron temperature, and rn r is the re-

duced effective mass mr=m6m7/(m6_m7), where m 6

and m 7 are the density of states effective masses of the X 6

and X 7 are the density of states effective masses of the X 6

and X 7 valleys, respectively. For GaP, m6= 1.33me and

m7=O.72me,12 where m e is the free-electron mass. The

energies of the optically coupled states, E 6 and ET, at the
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FIG. 2. Transient induced IR-absorption when _.pump=293

nm and )_p_ob_=4.7 #m. The excess absorption is due to elec-

trons in the X7 valley. The inset is the transient IR absorption
when _purnp _--- 585 nm and ;_-_,,b_=4.7 #m.
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sufficient kinetic energy to undergo intervalley scattering

to the X 7 valley. Therefore, no redistribution occurs be-

tween the X 6 and X 7 valleys.
In the classical Drude model, FCA at a particular

wavelength is related to the carrier density N, the carrier
effective mass m*, and the carrier mobility p, by

aFCA oc N/( m *2p ). The mobility is given by

i.t=e (_')/m *, where e is the charge of the carrier and
(r) is the average carrier momentum relaxation time. 14

Therefore, electrons in different valleys, with different
effective masses and different mobilities, will have
different free-carrier absorption cross sections. This

effect has been seen experimentally as a time-dependent

free-carrier absorption due to the intervalley relaxation of
electrons among the different conduction-band valleys in
GaAs. 15'16 It is expected that the mobility of the elec-

trons residing in the upper conduction-band, XT, valley

will be significantly reduced due to strong, relatively un-
screened, intervalley scattering to the higher effective-

mass X 6 valley. 16 The hole contribution to FCA is ex-
pected to be negligible due to degeneracy and screening, t6
On the basis of all of the above considerations, the excess

FCA at early delay times is attributed to the transient

electron population in the upper conduction-band, X7

valley.
The temporal behavior of the electron population in

the upper conduction-band, XT, valley, NT(t), is obtained
directly from the excess FCA at early delay times t6 by

deconvoluting transient FCA due to the X 7 electrons

with the probe-pulse temporal profile. This result is
shown in Fig. 3. These growth and decay times of the
transient electron population in the X 7 valley in GaP
have been time resolved. The X 7 valley electron popula-

tion peaks at 2.0 ps, and has a decay time of 4.5 ps.
In the Drude model, the induced FCA is inversely pro-

portional to the mobility and effective mass of the excited
carriers. This classical theory, which predicts that

CtFCAO c _2, has been shown to fit FCA for wavelengths

> 10 pm accurately. 15 For our range of probe wave-
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FIG. 3. Transient electron population in the X7 valley. NT(t)

(circles) is obtained as explained in the text.

lengths it is necessary to perform a full quantum-
mechanical calculation including all of the possible

scattering mechanisms which contribute to the mobility,
and then average over the carrier energy distributions. 14
The results of this calculation will be compared with the

experimental FCA magnitude and spectral dependence to
obtain the transient mobility of the carriers and the dom-
inant scattering mechanisms which contribute to the mo-

bility.
FCA is a second-order process where a free carrier in

state k first makes a transition to a virtual state k' by ab-

sorption of a photon, and then makes a transition to the
final state k" by absorption or emission of a phonon
which conserves crystal momentum, or by the reverse

process. Using second-order perturbation theory the ab-
sorption coefficient may be written as

4ti#ocV f d3k d3k"S±f(k)[1--f(k")] ,
O_FCA± (2_r)6n A 2_o

(3)

where n is the index of refraction; A 0 is the amplitude of

the vector potential of the probe pulse; Po is the permea-

bility in vacuum; and _o is the probe photon frequency,
where f (k) and f (k") are the occupation probabilities of
the initial and final free carrier states, respectively. The

transition 9robability S± is given by

2_r tnk'kl21nk"k "12 ]S± = _- ,h2c02 6(E'--E --hto±htoq ) , (4)

where Hk,, k, is the matrix element of the Hamiltonian for

phonon emission (+) or absorption (--), Hk'k is the ma-
trix element for photon absorption, tOq is the phonon fre-

quency with wave vector q, and E and E' are the initial
and final carrier energies, respectively.

Equations (3) and (4) and the appropriate scattering
matrix elements are used to calculate the wavelength

dependence for the possible types of carrier scattering.
This model takes into account the many-valley and

multiple-conduction-band nature of the band structure.
The scattering mechanisms included were polar-optical-

phonon scattering, intervalley deformation-potential
scattering by zone-edge LO and LA phonons, intravalley
deformation-potential scattering by long-wavelength LO,
LA, and TA phonons, and electron-hole scattering,
which may have an influence on the mobility. 15 The ma-
trix element for electron-hole scattering was obtained
from the matrix element for ionized-impurity scattering,

with the electron mass replaced by the electron-hole re-
duced mass.17

The results of this calculation show that the X 6 and X 7

valley electrons make the main contributions to the FCA

at 2 ps. At 30 ps most of the electrons have relaxed to
the lower-energy X6 valley, and make the main contribu-
tion to FCA for long delay times. At 2 ps the absorption

at _probe _ 4.7/_m due to the X 7 valley electrons is about
4.1 times that of the absorption due to the X 6 valley elec-

trons. This value agrees well with the ratio of the magni-
tude of the excess absorption at 2 ps relative to the mag-

nitude of the absorption at 30 ps for _'probe-- 4.7 pro. The



9632 M.A. CAVICCHIA AND R. R. ALFANO

hole contribution to the FCA is negligible due to degen-
eracy and screening. The dominant scattering mecha-
nisms at 2 ps are intervalley scattering of X 7 valley elec-
trons into the X 6 valley, which dominates the relaxation

of the X 7 valley electrons, and electron-hole scattering.

The combination of these two types of scattering mecha-
nisms give rise to a X2,s dependence of the FCA spec-
trum. It may be noted that polar-optical-phonon scatter-

ing also gives rise to the same wavelength dependence,
but the magnitude of the absorption is much too small

due to strong screening of this scattering process by the
high-density electron-hole plasma. Is On the other hand,

intervalley deformation-potential scattering is relatively
unscreened. At 30 ps the dominant scattering mecha-
nism is electron-hole scattering. Electron-hole scattering
gives rise to a 3.3.5 dependence of the FCA spectrum, in
agreement with the spectrum measured at 30 ps.

The dominant scattering mechanism for the X 7 valley

electron population, at 2 ps, was found to be intervalley
scattering to the X 6 valley by L• and LA phonons. The
transient mobility of the X 7 population can be estimated

from the calculated intervalley scattering rate. The ma-
trix element for the intervalley scattering is TM

IHk,,k,]±_Ox6xT[(Nqq.. 1 I ]1/2-_ :g -i )_i/2p Vogq , (5)

where Nq is the Bose-Einstein occupation number for the

relevant phonons with wave vector q, p is the mass densi-

ty, V is the crystal volume, and Dx6x7 is the effective in-

tervalley deformation potential.t9 To fit the FCA spectra

at 2 ps, Dx6x7 is treated as an adjustable parameter. The

results for the best fit are shown as the dashed line in Fig.
1. The best fit to the data is obtained for a value of

Dx6xT=3.2 eV/._. A mobility of/z=l.4 cm2/Vs was

obtained for the X 7 valley electron population at the de-

lay time of 2 ps. For the photoexcited high-energy,
high-density electron-hole plasma generated in our exper-
iment, the mobility of the X 7 valley electrons is

significantly reduced due to strong, relatively un-
screened TM intervalley scattering to the higher effective-

mass X 6 valley. The intervalley scattering rate of X 6 val-

ley electrons is not as great since few X 6 valley electrons

are energetic enough to scatter into the XT, F6, or L 6 val-
leys.

For longer delay times the electrons have transferred

to the lowest-energy X 6 valley. The dominant scattering

mechanism giving rise to the FCA at these long delay
times is electron-hole scattering of holes with electrons in
the X 6 valley. From the magnitude of the FCA the mo-

bility of the X 6 valley electrons is estimated to be/_ = 5.5
cm2/V s at 30 ps.

The transient mobility of the electrons was then calcu-

lated by the above procedure for each delay time that the
absorption at _.probe=4.7 _m was measured. The result

of this calculation is shown in Fig. 4. For the first data
point, the electron mobility is 117 cm2/V s, which is close
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FIG. 4. Transient mobility of the electrons calculated as ex-
plained in the text.

to the steady-state value of 120 cm2/V s, as quoted in the

literature. As the population of the "¥7 valley builds up,
the electron mobility rapidly drops to a value of 1.4

cm2/V s due to Xv----}X 6 intervalley scattering. As the X 7

valley population decays and the X7--*X 6 intervalley
scattering slows down, the mobility recovers to a value of
5.5 cm2/V s, and from this time on the mobility is limited

by electron-hole scattering due to the high excitation

density. The electron mobility will only slowly increase
to its steady-state value on the same time scale as
electron-hole recombination or carrier diffusion.

In summary, measurements of the induced IR (2.5-5.5

#m) absorption, due to photoexcited high-energy, high-
density electrons in the satellite and upper conduction-
band valleys in GaP, were performed. From a fit to the

IR-absorption spectra insight into the dynamics of the re-
laxation of the hot electrons is obtained. It was deter-

mined that at early delay times, -2 ps, the dominant

scattering mechanisms are intervalley scattering of elec-
trons from the upper conduction-band, X7 valley to the
lower conduction-band, X 6 valley, and electron-hole

scattering. The X 7 valley population is depleted within 5

ps, and for longer times the dominant scattering mecha-

nism is electron-hole scattering of holes with X 6 valley
electrons. From the magnitude of the induced FCA the

XT---_X 6 effective intervalley scattering deformation po-
tential and the transient mobility of the hot electrons
were estimated.
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